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Abstract. This paper presents a new action recognition approach based on local 
spatio-temporal features. The main contributions of our approach are twofold. 
First, a new local spatio-temporal feature is proposed to represent the cuboids 
detected in video sequences. Specifically, the descriptor utilizes the covariance 
matrix to capture the self-correlation information of the low-level features 
within each cuboid. Since covariance matrices do not lie on Euclidean space, 
the Log-Euclidean Riemannian metric is used for distance measure between 
covariance matrices. Second, the Earth Mover’s Distance (EMD) is used for 
matching any pair of video sequences. In contrast to the widely used Euclidean 
distance, EMD achieves more robust performances in matching 
histograms/distributions with different sizes. Experimental results on two 
datasets demonstrate the effectiveness of the proposed approach. 
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1  Introduction 

Human action recognition is a paramount but challenging task in computer vision. It 
has many potential applications, such as intelligent surveillance, video indexing and 
browsing, human-computer interface etc. However, there exist many difficulties with 
human action recognition, including geometric variations between intra-class objects 
or actions, as well as changes in scale, rotation, viewpoint, illumination and occlusion.  

In recent years, a number of approaches have been proposed to fulfill action 
recognition task. Among them, bag of visual words (BOVW) approaches are greatly 
popular, due to their simple implementation, low cost, and good reliability. By fully 
exploiting local spatio-temporal features, the BOVW approaches are more robust to 
noise, occlusion, and geometric variation than other ones. 

In this paper, we propose a BOVW based framework for human action recognition. 
The framework has the following two contributions. Firstly, a novel local 
spatio-temporal descriptor under the Log-Euclidean Riemannian metric [1, 10] is 
proposed for human action recognition. To the best of our knowledge, it is applied to 
human action recognition for the first time. Compared with several popular 
descriptors in action recognition, our descriptor has the advantages of high 



discrimination and low computational cost. Second, we employ the EMD [13] to 
match pairs of video sequences. Several desirable properties of the EMD ensure that it 
is more suitable for action recognition than many of the other histogram matching 
measures.  

The remainder of the paper is organized as follows. Section 2 gives a review of 
BOVW approaches. Section 3 discusses the proposed framework for human action 
recognition, including the new descriptor based on the Log-Euclidean Riemannian 
metric and classification based on Earth Mover’s Distance. Section 4 reports 
experimental results on two human action datasets. Section 5 concludes the paper. 

2  Related work 

Inspired by the bag of words (BOW) approaches used in text retrieval, some 
state-of-the-art approaches [2, 3, 4, 5, 17, 19] take the BOVW strategy for action 
recognition. Typically the BOVW based approaches proceed with the following steps: 
patch extraction, patch description, histogram computation, and histogram 
classification. For each step, many corresponding algorithms are proposed. The 
following is a brief introduction to the aforementioned four steps needed by the 
BOVW based approaches. 

In the patch extraction step, Laptev [2] first extends the notion of the Harris spatial 
interest points into the spatio-temporal domain. In [3], Laptev detects more interest 
points at multiple spatio-temporal scales. Niebles et al. [4] use separable linear filters 
to extract features. Dollár et al. [7] improve the 3D Harris detector and apply Gabor 
filtering to the temporal domain. Wong et al. [8] propose a global information based 
detector and run experiments with four different detectors on the KTH dataset. The 
experimental results indicate that Dollár et al.’s detector achieves a better recognition 
accuracy, Laptev’s detector gives insufficient interest points, while the saliency 
detector [11] reports many of points without discriminative enough. Consequently, 
our framework employs Dollár et al.’s detector. 

Patch description plays a fundamental role in that it directly determines the 
recognition performance. Usually, the patch is represented as a cuboid which includes 
spatio-temporal information against the 2-D block. In fact, several local spatial 
descriptors used in image [9] are extended into spatio-temporal domain to form the 
cuboid descriptors, which extract image feature vectors from the given cuboid. 
Typically, there are three kinds of feature extraction methods for the cuboid. (1) The 
simplest method is to concatenate all points in the cuboid in turn [4, 8]. However, it is 
sensitive to small perturbations inside the cuboid and usually too high in dimension to 
be used directly. (2) Compute the histogram of features in cuboid (e.g. the histogram 
of gradient values (HOG) [3]). Such methods are robust to perturbations but ignore all 
positional information. (3) The cuboid is divided into several sub-cuboids, and then 
histogram is computed for each sub-cuboid separately [7, 14]. This local histogram 
makes a tradeoff between the former two kinds of methods, such as SIFT in [14]. In 
comparison, our descriptor is significantly different from the above three kinds of 
methods, for it utilizes the statistical property of the cuboids under the Log-Euclidean 
Riemannian metric.  



Several classifiers are used in the last step - histogram matching and classification. 
Niebles et al. [4] use latent topic models such as the Probabilistic Latent Semantic 
Analysis (PLSA) model and Latent Dirichlet Allocation (LDA) model. Histogram 
features of training or testing samples are concatenated to form a co-occurrence 
matrix as the input of the PLSA and LDA. Schuldt et al. [2] use the Support Vector 
Machines (SVM) for classification. Lucena et al. [6] and Dollár et al. [7] use Nearest 
Neighbor Classifier (NNC) to classify videos. 

 

 
Fig. 1. Flowchart of the proposed framework. 

3  Our Action Recognition Framework 

3.1 Overview 

The proposed action recognition framework directly handles the input unsegmented 
image sequences to recognize low-level actions such as walking, running, or hand 
clapping. Notice that there is no need for any preprocessing in our recognition system. 
But in [12, 18, 20], there is a common limitation that a figure centric spatio-temporal 
volume or silhouette for each person must be obtained and adjusted with a fixed size 
beforehand. As we know, object segmentation and tracking is a hard task in computer 
vision.  

Fig. 1 shows the flowchart of the framework. First of all, we employ the Dollár et 
al.’s detector [7] to detect cuboids at each frame. Subsequently, a new descriptor is 
proposed to extract effective feature from the cuboids. Further, the features under the 
Log-Euclidean Riemannian metric from training videos are quantized to form an 
appearance codebook (i.e. BOVW) by using the k-mean clustering method. In this 
case, each video sample is eventually represented as a histogram of BOVW. In the 
testing phase, the test video is also represented as the histogram of BOVW and then 
classified according to histogram matching between the test video and training videos. 
Specifically, the EMD is employed for matching each video pair instead of the 
Euclidean distance. Finally, the test video is classified according to the nearest 
classification criterion.  

In the sections 3.2 and 3.3, our descriptor and the EMD based histogram matching 
are described in detail.  



3.2 The descriptor 

A good descriptor for action recognition should satisfy many qualifications: (a) scale 
invariance; (b) camera viewpoint invariance; (c) rotation invariance; (d) robustness to 
partial occlusion; (e) insensitivity to illumination change; (f) tolerance to large 
geometric variations between intra-class samples. Motivated by this, our novel 
descriptor is based on the Log-Euclidean Riemannian metric and greatly different 
from the previous methods. It provides a new fusion mechanism of low-level features 
in the cuboid. The construction process of this descriptor includes two steps: 
computing the covariance matrix of low-level image features and Log-Euclidean 
mapping for covariance matrix. Based on the covariance matrix, our descriptor has 
the properties of (c) and (e). In addition, our descriptor is also scale invariant to a 
certain extent, for the cuboid is obtained from the video according to its scale. A 
discussion on the qualification (f) is given in section 4. 

3.2.1 Covariance matrix computation 

The low-level features are extracted from the cuboids at first. Let s be a pixel in a 
cuboid, then all the points in the cuboid form a points set S = {s1, s2, …, sN }, where N 
is the number of points. Three sorts of low-level information at each point si in the 
cuboid are extracted and thus the vector of pixel si is represented as an 8-D feature 
vector li = (x, y, t, fx, fy, ft, vx, vy), where (x, y, t) is the positional vector, (fx, fy, ft) is the 
gradient vector, and (vx, vy) is the optical flow vector. As a result, the cuboid is 
represented by a 8-D feature vectors set L= {l1 , l2 , …, lN}, with the total dimensions 
being 8×N (Usually N is several thousands). Because of high dimension of cuboid 
feature L, it is necessary to transform L into a more compact form.  

We utilize the covariance matrix to characterize the cuboid feature L. Therefore, 
the cuboid is represented as an 8×8 covariance matrix: 
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where u is the mean of vectors in L. Therefore, the dimension of the cuboid feature is 
reduced from 8×N to 8×8. Besides, the covariance matrix can be computed easily and 
quickly. 
   The covariance matrix (1) reflects the second-order statistical properties of 
elements in the vector li. Moreover, covariance matrix does not have any information 
regarding the ordering and the number of its vectors. This leads to a certain scale and 
rotation invariance. Further, it is proved in [16] that large rotations and illumination 
changes are also absorbed by the covariance matrix.  

3.2.2 Riemannian geometry for covariance matrices 

The covariance matrix is a symmetric nonnegative definite matrix. In our case, it is 
usually a symmetric positive definite (SPD) matrix. However, it does not lie on a 
Euclidean space. Thus, it is very necessary to find a proper distance metric for 
measuring two covariance matrices. Recently, a novel Log-Euclidean Riemannian 



metric [1] is proposed on the SPD matrices. Under this metric, the distance measures 
between SPD matrices take a very simple form. Therefore, we employ the 
Log-Euclidean Riemannian metric to measure the distance between two covariance 
matrices. The following is a brief introduction to the Log-Euclidean Riemannian 
metric.  

Given an n×n covariance matrix C, the singular value decomposition (SVD) of C is 
denoted as U∑U T, where ∑= diag (λ1, λ2, …, λn) is the diagonal matrix of the 
eigenvalues, and U is an orthonormal matrix. By derivation, the matrix logarithm 
log(C) is defined as:  

TU))n(λ,),(λ),(λdiag(U
k

k)nI(C
k

k)((C) ⋅⋅=∑
∞

=
−

+−
= log2log1log

1

11log L  (2) 

where In is an n×n identity matrix. Under the Log-Euclidean Riemannian metric, the 
distance between two covariance matrices A and B can be easily calculated by 

(B)(A) loglog − . 
Compared with the widely used affine-invariant Riemannian metric, the 

Log-Euclidean Riemannian metric has a much simpler form of distance measure. 
Moreover, the Log-Euclidean mean can be computed approximately 20 times faster 
than affine-invariant Riemannian. Please see more details of these two metrics in the 
literature [1, 10]. Therefore, according to the above two steps, each cuboid is 
represented as a low-level feature covariance matrix under the Log-Euclidean 
Riemannian metric. It has the advantages of low computational complexity and high 
discrimination.  

3.3 Video Classification based on EMD 

It is reported that the Earth Mover’s Distance (EMD) can achieve better performances 
for image retrieval than some of the common histogram dissimilarity measures [15]. 
Following the observations [15], we employ the EMD to match pairs of video 
sequences in our action recognition framework. The EMD, proposed by Yossi Rubner 
et al. [13], is the minimal amount of work that must be performed to transform one 
distribution into the other by moving “distri ution m ss” around. Here the distribution 
is called signature. Let 

b a
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clusters, where pi is the cluster prototype and  is the weight of the cluster; and let 
ipω
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11=  be the second signature with n clusters; and D = ( dij )m×n 
denotes the ground distance matrix where dij is the ground distance between clusters pi 
and qj. We want to find a flow F = ( fij )m×n,  that minimizes the overall cost: 
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where fij (1≤ i ≤ m, 1≤ j ≤ n) is the flow between pi and qj. Once the transportation 
problem is solved, and we have found the optimal flow F, the earth mover's distance 
is defined as the work normalized by the total flow:  
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In our recognition framework, the specific procedure of the EMD based histogram 
matching is listed in Table 1. We first calculate a ground distance matrix Dall of all 
visual words, in order to avoid computing the ground distance between visual words 
repeatedly. The L2-norm distance is used as the ground distance, and therefore the 
ground distance matrix is the covariance matrix of all the visual words.  

Table 1. The specific procedure of the EMD based histogram matching. 

Input: the visual words histograms of testing and training videos Ħtest, Ħtrain, the 
covariance matrix of all visual words Dall. 
Output: the action classes of testing videos. 
Algorithm: 
1. Look up Dall to form the ground distance matrix D of testing and training videos. 
2. Obtain the weight vector of each video by computing the percentage of its each 

word relative to its total words. 
3. Solve the program (3) to obtain the optimal flow F. 
4. Compute the EMD between testing and training videos by (4). 
5. The testing video is classified by the nearest neighboring criterion. 

 
Theoretically, the EMD has many good properties, making it more robust for action 

recognition in contrast to other histogram matching techniques. Firstly, it well 
tolerates some amount of features deformations in the feature space, and there is no 
quantization problems caused by rigid binning. Small changes in the total number of 
clustered visual words do not affect the result drastically. Thus, it’s unnecessary to 
cluster the visual words accurately. Secondly, it allows for partial matching. Since the 
detector directly manipulates the input videos in our framework, it is inevitable that 
some of the cuboids will come from background. Partial matching is able to handle 
this disturbance. Thirdly, it can be applied to distributions/signatures with different 
sizes, leading to better storage utilization. The numbers of visual words occurring in 
different video samples vary widely. For example, the number of visual words 
occurring in a ‘skip’ action video is 50, but in a ‘bend’ action video it is 10.  

In summary, the EMD can improve the classification performances for action 
recognition due to its robustness. In comparison, the bin-to-bin histogram 
dissimilarity measures, like the Euclidean distance, are very sensitive to the position 
of the bin size and the bin boundaries. 

4  Experiments 

As illustrated in Fig. 2, we test our approach on two multi-pose and multi-scale 
human action datasets: the Weizmann dataset and the KTH dataset, which have been 
used by many authors [3, 4, 12] recently. We perform leave-one-out cross-validation 



to make performance evaluations. Moreoever, there is no overlap between the training 
set and testing set.  

 

 

Fig. 2. Representative frames from videos in two datasets: Row 1 are sampled from Weizmann 
dataset, Row 2 are from KTH dataset. 

The Weizmann human action dataset contains 10 different actions. There are totally 
93 samples in the dataset performed by 9 subjects. All the experiments on this dataset 
use the videos of the first five persons to produce the bag of visual words. In each run, 
8 actors’ videos are used as the training set and the remaining one person’s videos as 
the testing set. So the results are the average of 9 times runs. 

The KTH video database containing six types of human actions performed by 25 
subjects in four different scenarios: outdoors, outdoors with scale variation, outdoors 
with different clothes and indoors. There are totally 599 sequences in the dataset. The 
videos of the first two persons are used to produce the bag of visual words. In each 
run, 24 actors’ videos are used as the training set and the remaining one person’s 
videos as the testing set. The results are the average of 25 times runs. 

We divide the experiments into two groups. One group aims at comparing our 
descriptors with three other typical descriptors: Laptev’s spatio-temporal jets [2], 
PCA-SIFT [7, 14], and histogram of oriented gradient (HoG) [3]. The second group 
of experiments aims at validating that the EMD is more robust than other histogram 
dissimilarity measures.  

4.1 Descriptor Comparison 

We compare our descriptors with three other typical descriptors. Specifically, 
Laptev’s spatio-temporal jet is 34-dimensional gradient vector l=(Lx,Ly,Lt,Lxx,…,Ltttt), 
where L is the convolution of original frame and an anisotropic Gaussian kernel with 
independent spatial variance and temporal variance. PCA-SIFT descriptor applies 
Principal Components Analysis (PCA) to the normalized gradient vector formed by 
flattening the horizontal and vertical gradients of all the points in the cuboid. HoG is 
obtained by computing the normalized gradient histogram of all the points in the 
cuboid. The same experimental configurations are adopted for these descriptors, and 
the EMD based classifier is employed. 

Fig. 3 (a) and (b) respectively show the classification results of the four descriptors 
on the two datasets. It’s clear that the average recognition accuracy of our descriptor 
is above 10% higher than others on both datasets. More specifically, it achieves the 
best recognition performances for nine actions on the Weizmann dataset and four 



actions on the KTH dataset. 
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Fig. 3. Comparisons between four descriptors for each action on the two datasets. The left is on 
the Weizmann dataset, and the right is on the KTH dataset. 

4.2 EMD based classification vs. the Euclidean distance based classification 

The second group of experiments aims to demonstrate the robustness of the EMD 
versus other histogram dissimilarity measures. Lucena et al. [6] and Dollár et al. [7] 
measure the dissimilarity between videos by using the Euclidean distances between 
histograms, and then assign the test sequence to the class label identical to the nearest 
training video. We compare the EMD based approach with the Euclidean distance 
based approach [6, 7]. In this group of experiments, the experimental configurations 
for the Euclidean distance based approach are the same as ours.  

Table 2 reports the experimental results of the two classification approaches on the 
two datasets. For the three descriptors, the recognition accuracies of the EMD based 
approach all exceed greatly those of the Euclidean distance based ones. For the KTH 
dataset, we can see that the EMD based approach is on average 3.8% higher the 
Euclidean distance based approach. For the Weizmann dataset, the average 
recognition accuracy of our descriptor is about 10% higher than other ones. More 
importantly, our EMD-based descriptor achieves the best recognition accuracies on 
the two datasets. 

Table 3 shows the confusion matrices of our approach on the Weizmann and KTH 
dataset. From the confusion matrix of the Weizmann dataset, it is seen that our 
approach works much better on the actions with large movements, but somewhat gets 
confused with the actions of small difference. The recognition accuracies for the 
actions with large movements are maximally high up to 100%, such as “bend”, “Jack”, 
“Pjump”, “side”, “wave1”, and “wave2”. From the confusion matrix of the KTH 
dataset, we can see that the “hand” related actions (“boxing”, “handclapping”, and 
“handwaving”) are a little confused with each other. One possible reason for this is 
that our cuboids are insufficient for representing the details of the action. In our 
approach, about 40 cuboids are extracted in each video, and the BOVW consists of 



300 visual words. But in [21], 200 cuboids are extracted in each video and the BOVW 
contains 1000 visual words. 

Table 3. The confusion matrices of our approach. The top one is on the KTH action 
dataset. The bottom is on the Weizmann database. 
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Table 2. Comparisons between the Earth Mover’s Distance based classification and the 
Euclidean distance based classification on Weizmann and KTH database. The average 
recognition accuracies are shown. 

 ST jets PCA-SIFT HoG Our 
E D 0.5000 0.6000 0.6000 0.6778 

Weizmann 
EMD 0.7111 0.7667 0.7444 0.9000 
E D 0.6424 0.6094 0.6354 0.6840 

KTH 
EMD 0.6753 0.6424 0.6076 0.7969 
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Finally, we evaluate the influence of the number of visual words in the BOVW on 
recognition accuracy using the Weizmann dataset, as illustrated in Fig.4. When the 
number of visual words is more than 300, the recognition accuracy fluctuates from 
80% to 90%. The dependency of the recognition accuracy on the size of vocabulary is 
not very serious.  
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5  Conclusion 

In this paper, we have developed a framework for recognizing low-level actions from 
input video sequences. In our recognition framework, the covariance matrix of the 
low-level features in cuboids has been used to represent the video sequence under the 
Log-Euclidean Riemannian metric. The descriptor is compact, distinctive, and has 
low computational complexity. Moreover, we have employed EMD to measure the 
dissimilarity of videos instead of traditionally Euclidean distances of histograms. 
Experiments on two datasets have proved the effectiveness and robustness of the 
proposed framework. 
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